Georgia Cancer Info A Service of GeorgiaCORE     Admin Login  |  My Saved Results  |  Contact Us
Search the Website
Adult Cancers  |  Pediatric Cancers  |  Treatments  |  ASCO Guidelines  |  CoC Guidelines  |  IOM Guidelines  |  NCCN Guidelines  |  Prevention  |  Screening  |  Survivorship

Tell Us What You Think

In an effort to give you the best possible service, we would be grateful if you could take a few minutes of your time to answer a few questions.

 

Hyperthermia

Hyperthermia (also called thermal therapy or thermotherapy) is a type of cancer treatment in which body tissue is exposed to high temperatures (up to 113°F). Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. By killing cancer cells and damaging proteins and structures within cells, hyperthermia may shrink tumors.

Several methods of hyperthermia are currently under study, including local, regional, and whole-body:

In local hyperthermia, heat is applied to a small area, such as a tumor, using various techniques that deliver energy to heat the tumor. Different types of energy may be used to apply heat, including microwave, radiofrequency, and ultrasound. Depending on the tumor location, there are several approaches to local hyperthermia:

  • External approaches are used to treat tumors that are in or just below the skin. External applicators are positioned around or near the appropriate region, and energy is focused on the tumor to raise its temperature.

  • Intraluminal or endocavitary methods may be used to treat tumors within or near body cavities, such as the esophagus or rectum. Probes are placed inside the cavity and inserted into the tumor to deliver energy and heat the area directly.

  • Interstitial techniques are used to treat tumors deep within the body, such as brain tumors. This technique allows the tumor to be heated to higher temperatures than external techniques. Under anesthesia, probes or needles are inserted into the tumor. Imaging techniques, such as ultrasound, may be used to make sure the probe is properly positioned within the tumor. The heat source is then inserted into the probe. Radiofrequency ablation (RFA) is a type of interstitial hyperthermia that uses radio waves to heat and kill cancer cells

In regional hyperthermia, various approaches may be used to heat large areas of tissue, such as a body cavity, organ, or limb.

  • Deep tissue approaches may be used to treat cancers within the body, such as cervical or bladder cancer. External applicators are positioned around the body cavity or organ to be treated, and microwave or radiofrequency energy is focused on the area to raise its temperature.

  • Regional perfusion techniques can be used to treat cancers in the arms and legs, such as melanoma, or cancer in some organs, such as the liver or lung. In this procedure, some of the patient’s blood is removed, heated, and then pumped (perfused) back into the limb or organ. Anticancer drugs are commonly given during this treatment.

  • Continuous hyperthermic peritoneal perfusion (CHPP) is a technique used to treat cancers within the peritoneal cavity (the space within the abdomen that contains the intestines, stomach, and liver), including primary peritoneal mesothelioma and stomach cancer. During surgery, heated anticancer drugs flow from a warming device through the peritoneal cavity. The peritoneal cavity temperature reaches 106–108°F.

Whole-body hyperthermia is used to treat metastatic cancer that has spread throughout the body. This can be accomplished by several techniques that raise the body temperature to 107–108°F, including the use of thermal chambers (similar to large incubators) or hot water blankets.

The effectiveness of hyperthermia treatment is related to the temperature achieved during the treatment, as well as the length of treatment and cell and tissue characteristics. To ensure that the desired temperature is reached, but not exceeded, the temperature of the tumor and surrounding tissue is monitored throughout hyperthermia treatment. Using local anesthesia, the doctor inserts small needles or tubes with tiny thermometers into the treatment area to monitor the temperature. Imaging techniques, such as CT (computed tomography), may be used to make sure the probes are properly positioned.

Hyperthermia is almost always used with other forms of cancer therapy, such as radiation therapy and chemotherapy. Hyperthermia may make some cancer cells more sensitive to radiation or harm other cancer cells that radiation cannot damage. When hyperthermia and radiation therapy are combined, they are often given within an hour of each other. Hyperthermia can also enhance the effects of certain anticancer drugs.

Numerous clinical trials have studied hyperthermia in combination with radiation therapy and/or chemotherapy. These studies have focused on the treatment of many types of cancer, including sarcoma, melanoma, and cancers of the head and neck, brain, lung, esophagus, breast, bladder, rectum, liver, appendix, cervix, and peritoneal lining (mesothelioma). Many of these studies, but not all, have shown a significant reduction in tumor size when hyperthermia is combined with other treatments. However, not all of these studies have shown increased survival in patients receiving the combined treatments.

Search for clinical trials in Georgia.

References in this section:

Adapted from the National Cancer Institute's PDQ Database: http://www.cancer.gov/cancertopics/factsheet/Therapy/hyperthermia. (Accessed August 2013)

 

Georgia Cancer Info
Copyright 2014, Georgia Center for Oncology Research and Education, Inc. All Rights Reserved.
Website Designed by Peachtree Solutions

Privacy and Site Use Policies